Zur Existenz des Scandiummonoxides

Von

V. Dufek, V. Brožek und F. Petrů

Institut für Anorganische Chemie der Chemisch-Technologischen Hochschule, Prag

(Eingegangen am 26. Mai 1969)

Durch Reduktion von Sc_2O_3 mit Silicium oder Magnesium bildet sich ein Produkt mit B1-Typ und einer Gitterkonstante a=4,45 Å. Die früher bestimmten Gitterparameter im Bereich 4,48-4,54 Å gelten für Produkte, die etwas Kohlenstoff enthalten, d. h. für ScO_xC_y mit x=0,95-1,03 und y=0,03-0,05.

Existence of Scandium Oxide

The reduction of Sc_2O_3 with silicon or magnesium yields a product of B1-type, lattice-constant a=4.45 Å. Lattice parameters, obtained before, at 4.48-4.54 Å are typical for substances containing some carbon, i.e. for ScO_xC_y , with x=0.95-1.03 and y=0.03-0.05.

In unseren Arbeiten über die Herstellung von Monoxiden der Übergangsmetalle ¹⁻³ erscheint als besonders bemerkenswert die von uns hergestellte feste Phase ScO mit B 1-Struktur. Über ihre technische Anwendung in Verbindung mit Titankarbid, dessen Härte durch Bildung einer festen Lösung mit obiger Phase merkwürdig erhöht werden kann ^{4, 5}, haben wir an anderer Stelle berichtet ⁶. Bei einer näheren röntgenographi-

¹ V. Dutek, Dissertat. Chem.-Techn. Hochschule Prag, 1963.

² F. Petrů und V. Dufek, Z. Chem. 6, 345 (1966).

³ V. Dujek, F. Petrů und V. Brožek, Mh. Chem. 98, 2424 (1967).

⁴ H. Nowotny und H. Auer-Welsbach, Mh. Chem. 92, 789 (1961).

⁵ G. W. Samsonov, G. N. Makarenko und T. J. Kosolapova, Dokl. Akad. Nauk SSSR 144, 1062 (1962).

⁶ F. Petrů, V. Dufek und V. Brožek, Chem. průmysl 16, 681 (1966).

schen Untersuchung der Proben im System TiC—ScO⁷ ergab sich unter Berücksichtigung der *Vegard*schen Regel, daß der Gitterparameter für das reine Scandiummonoxid noch unterhalb der bisher festgestellten unteren Grenze von 4,48 Å liegen soll.

Bei mehrmaliger Reproduktion der Reduktion von $\mathrm{Se_2O_3}$ im Wasserstoffstrom in Gegenwart von kohlenstoffhaltigen Gasen bei 1650—1750° C ist es nicht gelungen, eine kohlenstofffreie Probe herzustellen. Die Kohlenstoffmenge bewegte sich zwischen 0,3—0,8%. Bei niedrigeren Temperaturen (1350—1550° C) besaßen die Proben zwar weniger Kohlenstoff (unter 0,3%), enthielten aber auch beträchtliche Mengen von nicht reduziertem Sc-Sesquioxid; bei höheren Temperaturen beginnt eine starke Carbidbildung.

Da sich auf diese Weise kohlenstofffreie Proben nicht herstellen lassen, haben wir einen neuen Weg verfolgt, und zwar die Reduktion von Se_2O_3 mit Siliciumpulver gemäß:

$$Se_2O_3 + Si = 2 SeO + SiO.$$

Das nach dieser Gleichung eingewogene Pulvergemisch wurde in einem Mo-Tiegel in einem Vakuumofen bei $10^{-3}\,\mathrm{Torr}$ und $1500^{\circ}\,\mathrm{C}$ 5 Stdn. geglüht. Im Verlauf des Glühens kondensierte sich SiO auf den Mo-Abschirmblechen, was den Ablauf der erwarteten Reaktion bestätigt. Das gewonnene graue Pulver hatte einen Gitterparameter von $a=4,45\,\mathrm{\AA}$, wie aus Tab. 1 hervorgeht. In dieser Probe wurde kein Kohlenstoff nachgewiesen; der restliche Siliciumgehalt lag unter 1%. Mit der O-Aufnahme

Tabelle 1. Die Analysen des gewonnenen grauen Pulvers Sc-Gehalt 73,5%; Si-Gehalt 0,9—1,0%; Summenformel: ScO_{0,98}Si_{0,02}.

Röntgen-Linien:	ϑ_{\circ}	d	hkl	I/I
	17,50	2,556	111	62
	18,25	2,456		23
	20,25	2,220	200	70
•	20,50	2,195		30
	21,20	2,125		10
	29,25	1,573	220	100
	32,80	1,419	_	5
	34,85	1,345	311	96
	36,75	1,285	$\boldsymbol{222}$	35
	43,75	1,111	400	15
	48,80	1,021	331	40
	50.50	0.996	420	44

⁽Strahlung Cu-K $\alpha = 1,540 \text{ Å}$)

⁷ V. Brožek, Dissertat. Chem.-Techn. Hochschule Prag, 1968.

auf einer Thermowaage (Temperaturgradient 10° C/Min.) ist eine Formel ScO_{0,98} im Einklang. Ähnlich wie bei den früher gewonnenen Proben, entspricht die Auswertung der GTA- und DTA-Kurven der Möglichkeit einer Bildung von Sc₃O₄.

Eine kompliziertere Zusammensetzung, etwa ScO_{0,98}Si_{0,02}, ist nach unserer Meinung nicht wahrscheinlich, denn zu einem ähnlichen Produkt führt auch eine magnesiothermische Reduktion von Sc₂O₃. Weil die Entfernung des gebildeten MgO aus dem stark zusammengebackenen Gemisch nicht einfach ist, verzichten wir auf eine nähere Beschreibung.

Durch diese Versuche haben wir bestätigt, daß zur Reduktion von Sc_2O_3 auf eine niedrigere Oxidationsstufe ScO die Anwesenheit von Kohlenstoff nicht unbedingt notwendig ist.